Computing Bayes factors using thermodynamic integration.

نویسندگان

  • Nicolas Lartillot
  • Hervé Philippe
چکیده

In the Bayesian paradigm, a common method for comparing two models is to compute the Bayes factor, defined as the ratio of their respective marginal likelihoods. In recent phylogenetic works, the numerical evaluation of marginal likelihoods has often been performed using the harmonic mean estimation procedure. In the present article, we propose to employ another method, based on an analogy with statistical physics, called thermodynamic integration. We describe the method, propose an implementation, and show on two analytical examples that this numerical method yields reliable estimates. In contrast, the harmonic mean estimator leads to a strong overestimation of the marginal likelihood, which is all the more pronounced as the model is higher dimensional. As a result, the harmonic mean estimator systematically favors more parameter-rich models, an artefact that might explain some recent puzzling observations, based on harmonic mean estimates, suggesting that Bayes factors tend to overscore complex models. Finally, we apply our method to the comparison of several alternative models of amino-acid replacement. We confirm our previous observations, indicating that modeling pattern heterogeneity across sites tends to yield better models than standard empirical matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting Bayes factors with direct-path non-equilibrium thermodynamic integration

Thermodynamic integration (TI) for computing marginal likelihoods is based on an inverse annealing path from the prior to the posterior distribution. In many cases, the resulting estimator suffers from high variability, which particularly stems from the prior regime. When comparing complex models with differences in a comparatively small number of parameters, intrinsic errors from sampling fluc...

متن کامل

Estimating Bayes factors via thermodynamic integration and population MCMC

A Bayesian approach to model comparison based on the integrated or marginal likelihood is considered, and applications to linear regression models and nonlinear ordinary differential equation (ODE) models are used as the setting in which to elucidate and further develop existing statistical methodology. The focus is on two methods of marginal likelihood estimation. First, a statistical failure ...

متن کامل

A Study of Population MCMC for estimating Bayes Factors over Nonlinear ODE Models

Higher resolution biological data is now becoming available in ever greater quantities, allowing the complex behaviour of fundamental biological processes to be studied in much more detail. The area of Systems Biology is in desperate need of methods for inferring the most likely topology of the underlying genetic networks from this oftentimes noisy and poorly sampled data, to support the constr...

متن کامل

Marginal likelihood estimation via power posteriors

Model choice plays an increasingly important role in Statistics. From a Bayesian perspective a crucial goal is to compute the marginal likelihood of the data for a given model. This however is typically a difficult task since it amounts to integrating over all model parameters. The aim of this paper is to illustrate how this may be achieved using ideas from thermodynamic integration or path sam...

متن کامل

Bayes factors for the linear ballistic accumulator model of decision-making.

Evidence accumulation models of decision-making have led to advances in several different areas of psychology. These models provide a way to integrate response time and accuracy data, and to describe performance in terms of latent cognitive processes. Testing important psychological hypotheses using cognitive models requires a method to make inferences about different versions of the models whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systematic biology

دوره 55 2  شماره 

صفحات  -

تاریخ انتشار 2006